Ученые Института физики полупроводников им. А. В. Ржанова СО РАН (ИФП СО РАН) продемонстрировали высокую эффективность тепловидения нового поколения для изучения каталитических реакций.
Исследователи показали, что современный тепловизионный метод чувствителен к мельчайшим нюансам физико-химических превращений и способен заменить традиционные контактные методы температурной диагностики.
Катализаторы – особые вещества, способные ускорять химические реакции. Катализ широко используют в промышленности, в том числе, в металлургии, применяют для решения экологических проблем и актуальных задач в других сферах.
«Экспериментальным путем мы впервые достоверно показали, что чем выше температура каталитической реакции, тем выше активность катализатора. Ранее этот факт преимущественно признавали лишь априори очевидным. Связать эффективность реакции с ее температурой удалось благодаря синхронному применению матричного тепловизора, разработанному нами в ИФП СО РАН, и газоанализатора», – объясняет ведущий научный сотрудник лаборатории физических основ интегральной микроэлектроники Института физики полупроводников им. А.В. Ржанова СО РАН Борис Вайнер.
«Фактически, эта работа явилась первой научно-обоснованной заявкой на то, что тепловидение нового поколения способно со временем заменить ряд классических методов контроля в катализе», – добавляет исследователь.
Еще один феномен, который интересовал ученых – это адсорбция (захват, осаждение) молекул газа на поверхности твердого тела, также вызывающая тепловой эффект. Химические реакции зачастую начинаются именно с адсорбции, а чувствительность современного тепловизора настолько высока, что он способен разглядеть еле заметные температурные колебания, начиная с первых мгновений «соприкосновения» веществ. При этом выигрышной стороной тепловидения является то, что не нужно каждый образец измерять по отдельности.
«Мы провели показательный тепловизионный эксперимент, продемонстрировавший, как в смеси водяного пара, азота, кислорода и угарного газа изменяется температура сразу у нескольких органических и неорганических соединений одновременно. В том числе, у привычных «бытовых» рассыпчатых материалов: поваренной соли, горчичного порошка, манной крупы, сахарной пудры, порошка стрептоцида, гидроксида магния, золотого катализатора, нанесенного на поверхность оксида алюминия и самого оксида алюминия», – комментирует Борис Вайнер.
По словам исследователя, фантастическая чувствительность современного матричного тепловизионного метода (сотые доли градуса) и его высокое быстродействие позволяют «увидеть» распространение сложного профиля тепловых волн в слоях катализатора с разрешением в сотую долю секунды и выше. Оригинальные примеры вышеупомянутой эволюции тепловых волн также впервые представлены в обзоре. Результаты таких исследований важны для лучшего понимания того, как молекулы газа взаимодействуют с поверхностью реагентов при адсорбции и катализе. Других прямых способов извлечь подобную информацию сегодня не существует.
Иллюстрация: Термограмма/предоставлено Борисом Вайнером