В ходе исследования, проведенного в Лаборатории ядерных проблем ОИЯИ, ученые подтвердили, что использование флэш-режима в радиотерапии поможет сберечь окружающие опухоль здоровые ткани. Результаты эксперимента показали большую выживаемость клеток при облучении протонами во флэш-режиме, в отличие от облучения при стандартных мощностях доз. Эксперимент проводился на установке ЛЯП – фазотроне – с образованием высокоинтенсивного протонного пучка. По мнению ученых, данное исследование поможет в развитии методов радиотерапии в будущем, а также приблизит их к пониманию механизма действия флэш-эффекта.
Основная проблема лучевой терапии в том, что она может наносить вред окружающим опухоль здоровым тканям. Поэтому подводимая к опухоли доза ограничивается ее токсичностью для близлежащих здоровых биологических структур. Это может привести к снижению эффективности проводимой лучевой терапии и неполному уничтожению опухоли. Для уменьшения частоты возникновения радиационно-индуцированных побочных эффектов можно применять фракционирование дозы, то есть ее разделение на несколько сеансов. Также можно усовершенствовать способы доставки дозы в опухоль. Однако сегодня все большее значение придается флэш-терапии.
Флэш-терапия — инновационный метод облучения, основанный на одноименном явлении – флэш-эффекте. Смысл метода в том, что вся лечебная доза подводится к патологическому очагу за очень короткое время – порядка нескольких десятков миллисекунд. В таком режиме облучения уменьшается степень повреждения нормальных тканей, окружающих опухоль и попадающих под действие излучения, в то же время воздействие на раковые клетки сохраняется практически на прежнем уровне, что улучшает перспективу локального контроля опухоли при меньшей частоте возникновения побочных эффектов.
В настоящее время получены определенные результаты, в частности, показано, что флэш-терапия эффективно снижает токсичность в легких, кишечнике, головном мозге и коже лабораторных животных, а также позволяет сохранять противоопухолевый эффект в раковых клетках. При этом флэш-терапия на пучках электронов в первую очередь подходит для поверхностных опухолей (например, рака кожи), тогда как с помощью протонной флэш-терапии можно лечить глубоко расположенные новообразования. Это связано с тем, что протоны отличаются отсутствием рассеяния излучения в теле и возможностью торможения пучка на заданной глубине. При этом с глубиной проникновения плотность энергии возрастает, величина поглощенной дозы увеличивается, достигая так называемого пика Брэгга – максимума в конце пробега частиц.
Пилотные работы по исследованию флэш-эффекта были начаты в ОИЯИ еще в 2020 году. С этой целью на фазотроне был сформирован высокоинтенсивный, однородный в сечении, протонный пучок. Были также спроектированы, изготовлены и успешно испытаны две ионизационные камеры для мониторинга интенсивности пучка и измерения его горизонтального и вертикального профилей, разработано программное обеспечение для экспресс-обработки отсканированных изображений с радиохромных пленок, запечатлевающих профили пучка. Все это позволило начать проведение исследований флэш-эффекта при облучении как клеточных культур, так и малых лабораторных животных (мышей, крыс). В настоящее время группа ученых ОИЯИ завершила большую работу — по изучению выживаемости культуры клеток карциномы легкого человека линии А549 после облучения протонным пучком.
Клетки карциномы легкого человека линии А549 были взяты в банке клеточных культур Санкт-Петербурга и использовались учеными ОИЯИ в качестве модели. Для проведения эксперимента были выбраны именно опухолевые клетки, так как они легко культивируются in vitro и являются удобной моделью для изучения радиобиологических эффектов.
Облучение культуры клеток проводилось на протонном пучке 660 МэВ фазотрона ЛЯП ОИЯИ методом «напролет» (то есть с фиксированной энергией выведенного пучка) в двух режимах: стандартном, при мощности дозы около 0,1 Гр/с, и во флэш-режиме, при мощности дозы 70 Гр/с. Для сравнения результатов облучения в двух разных режимах: флэш- и стандартном – изучали клоногенную выживаемость клеток линии А 549. «Для этого облученные в двух исследуемых режимах клетки высевали на чашки Петри с низкой плотностью и культивировали в стандартных условиях в течение времени, необходимого для формирования колоний, – рассказывает старший научный сотрудник отдела фазотрона ЛЯП ОИЯИ Анна Рзянина. – Это нужно, чтобы единичные клетки могли сформировать отдельно растущие колонии (предполагается, что каждая колония выросла из одной клетки). Примерно через 12-14 суток из единичных клеток формируются колонии, видимые невооруженным глазом. После окраски колоний специальными красителями можно посчитать количество выросших колоний и по специальной формуле рассчитать выживаемость клеток после облучения в исследуемых режимах.
По результатам эксперимента ученые отметили, что статистически значимое различие в двух группах образцов появилось только при больших дозах – 4 и 6 Гр, а в диапазоне доз до 2 Гр планки погрешностей пересекаются. Тем не менее, если рассматривать общую тенденцию, то отчетливо видно, что облучение протонами при сверхвысокой мощности дозы снижает выживаемость клеток меньше, чем облучение в стандартном режиме.
«Это позволяет сделать вывод, что облучения во флэш-режиме оказывается для клеток более щадящим. Поэтому дальнейшее изучение флэш-эффекта представляет огромный теоретический и практический интерес. Применение флэш-режима в радиотерапии может минимизировать повреждения здоровой ткани и сократить количество фракций облучения. Тем не менее к настоящему времени отсутствует хорошо проработанное представление о механизме действия флэш-эффекта. Необходимы дальнейшие исследования, которые помогут прояснить его радиобиологический механизм. Также следует уделить особое внимание разработке специального оборудования и средств дозиметрии для проведения экспериментов в режиме флэш-облучения. В настоящее время над этой проблемой в ЛЯП активно работают старший научный сотрудник Алексей Агапов и научный сотрудник Константин Шипулин под руководством начальника отдела фазотрона Геннадия Мицына», – подытожила Анна Рзянина.
Список литературы:
-
V. Favaudon, R. Labarbe, C.L. Limoli. Model studies of the role of oxygen in the FLASH effect. // Med Phys. 49 (3), 2068 (2022)
- А.А. Вайнсон, Е.В. Соловьева. Флэш-эффект в лучевой терапии злокачественных новообразований и поиски его радиобиологического объяснения. Онкологический журнал: лучевая диагностика, лучевая терапия. // Онкологический журнал: лучевая диагностика, лучевая терапия. 5(4), 9 (2022)
- J. Bourhis, W.J. Sozzi, P.G. Jorge et al. Treatment of a first patient with FLASH-radiotherapy. // Radiother Oncol. 139, 18 (2019)
- А.В. Агапов, В.Н. Гаевский, Е.И. Лучин, Г.В. Мицын, А.Г. Молоканов, М.А. Цейтлина, С.В. Швидкий, К.Н. Шипулин. 50 лет со дня облучения первого пациента протонным пучком в Объединенном институте ядерных исследований (Дубна) // Медицинская физика. 4 (76), 121 (2017)
- J.D. Wilson, E.M. Hammond, G.S. Higgins, K. Petersson. Ultra-High Dose Rate (FLASH) Radiotherapy: Silver Bullet or Fool’s Gold? // Front Oncol. 9, 1563 (2020)
- P. Montay-Gruel, K. Petersson, M. Jaccard, G. Boivin, J-F. Germond, B. Petit et al. Irradiation in a Flash: Unique Sparing of Memory in Mice After Whole Brain Irradiation With Dose Rates Above 100 Gy/s. // Radiother Oncol. 124, 365 (2017)
- P. Montay-Gruel, M.M. Acharya, K. Petersson, L. Alikhani, C. Yakkala, B.D. Allen et al. Long-Term Neurocognitive Benefits of FLASH Radiotherapy Driven by Reduced Reactive Oxygen Species. // Proc. Natl. Acad. Sci. 116, 10943 (2019)
- C. Fouillade, S. Curras-Alonso, L. Giuranno, E. Quelennec, S. Heinrich, S. Bonnet Boissinot et al. FLASH Irradiation Spares Lung Progenitor Cells and Limits the Incidence of Radio-Induced Senescence. // Clin. Cancer Res. 26, 1497 (2019)
Информация предоставлена пресс-центром Объединенного института ядерных исследований
Источник фото: ru.123rf.com