Ученые Исследовательской школы химических и биомедицинских технологий Томского политеха разработали новые магнитоэлектрические наноструктуры на основе биосовместимых материалов. Это позволяет использовать их в биомедицине, например, для изготовления на их основе композитных материалов для регенеративной медицины, биосенсоров, адресной доставки лекарств. Магнитные и магнитоэлектрические свойства дают возможность управлять соответственно перемещением и поверхностным зарядом наноструктур. Наночастицы могут быть легко модифицированы под конкретные задачи и, в отличие от зарубежных аналогов, не содержат токсичных материалов. Проект реализуется в рамках мегагранта Минобрнауки России и национального проекта «Наука и университеты». Результаты работы ученых опубликованы в журнале Nano-Micro Small (Q1; IF: 15,153).

Роман Чернозем. Источник: пресс-служба ТПУ

Роман Чернозем. Источник: пресс-служба ТПУ

 

Разработка наноразмерных структур представляет большой исследовательский интерес для мировой науки. Они имеют потенциал для использования их в качестве неинвазивных хирургических инструментов. Такие наноструктуры приводятся в движение внешним источником — магнитным полем или ультразвуком. В частности, обычные магнитные наночастицы не позволяют осуществлять контролируемое высвобождение лекарства.

Ученые Томского политехнического университета синтезировали новые наночастицы с магнитоэлектрическими свойствами для биомедицинских приложений. Ранее подобные наноразмерные структуры с магнитоэлектрическими свойствами разрабатывались в России только для приложений в электронике. Проект реализуется под руководством директора Международного научно-исследовательского центра «Пьезо- и магнитоэлектрические материалы» ИШХБМТ Андрея Холкина. Новые гетероструктуры синтезированы гидротермальным методом. Они созданы по типу «ядро-оболочка», что позволяет получить материал с магнитоэлектрическими свойствами. Для этого исследователи соединили два разных по кристаллической структуре и химическому составу материала.

«Ядро представляет собой магнитострикционный материал — феррит марганца, который во внешнем магнитном поле может растягиваться, сжиматься, скручиваться. Его покрывает оболочка из пьезоматериала — модифицированного титаната бария. Когда мы подаем механическое напряжение на ядро, то есть деформируем материал за счет магнитного поля, деформация переходит на пьезооболочку и возникает электрический потенциал. Под действием внешнего магнитного поля мы можем перераспределять этот поверхностный заряд, то есть менять поляризацию. Создаваемый магнитоэлектрический эффект приводит к высвобождению лекарства, которое содержится на поверхности наноструктуры, по требованию в условиях переменного магнитного поля за счет изменения поляризации», — рассказывает доцент Исследовательской школы химических и биомедицинских технологий Томского политеха Роман Чернозем.

При модифицировании титаната бария для создания оболочки ученые частично заменили в нем ионы бария ионами кальция, ионы титана — ионами циркония. Это позволило усилить пьезосвойства, что в разы повышает эффективность наноструктур. А замена феррита кобальта, применимого обычно при создании таких гетероструктур, на феррит марганца помогла избежать токсического эффекта. Кроме того, феррит марганца является рентгеноконтрастным веществом: при помощи томографа можно отслеживать его распределение и накопление в организме. Это обуславливает высокую биосовместимость наноразмерных структур. Они способны легко встраиваться в организм пациента и стимулировать реакции клеток и тканей, необходимые для достижения оптимального терапевтического эффекта.

«Многие процессы в организме управляются электрическими биосигналами, в том числе клеточные функции. Когда мы создаем электрический материал, способный обладать такими функциями управления, и используем электрические стимулы пьезоэлектрического эффекта, мы можем «запускать» необходимые химические и биохимические реакции. Например, стимулировать регенерацию костных и нервных тканей или создавать губительный эффект для раковых клеток. Сейчас мы активно изучаем потенциал наноструктур для разработки на их основе нейростимуляторов для лечения болезней Паркинсона и Альцгеймера. Кроме того, они могут быть эффективны для очистки водоемов от органических загрязнителей. Заряженный материал в воде приводит к генерации активных форм кислорода, которые являются токсичными для органики – бактерий, вирусов, красителей», — отмечает профессор Исследовательской школы химических и биомедицинских технологий Роман Сурменев.

На данном этапе исследования ученые тестируют наноструктуры на биологических моделях и клеточных линиях. Это позволит подобрать оптимальные эксплуатационные параметры, такие как сила магнитного поля и время воздействия, для усиления положительного эффекта воздействия наночастиц и снижения негативного.

 

Источник информации и фото: пресс-служба Томского политехнического университета