Одной из самых острых проблем медицины остается антибиотикорезистентность, то есть возрастающая устойчивость бактерий к препаратам, которыми лечат инфекции. Поэтому ученые постоянно ищут новые противомикробные средства, в том числе содержащиеся в живых существах из дикой природы. Сотрудники ИБХ РАН и МФТИ впервые изучили механизмы действия капителлацина — антимикробного пептида морского многощетинкового червя Capitella teleta. Оказалось, что в липидной мембране вещество ведет себя не как другие антимикробные пептиды и подавляет бактерии за счет образования «ковра» на их поверхности. Работа опубликована в журнале Biomolecules.
Массовое использование антибиотиков в медицине и сельском хозяйстве привело к тому, что эволюционирующие и способные «обмениваться» друг с другом генами бактерии к ним быстро адаптируются. Препараты, которые еще недавно действовали на многие штаммы микробов, теряют эффективность, и им на смену приходится создавать новые. Чтобы быть активными, такие препараты должны иметь принципиально новый механизм действия. А чтобы использовать их в клинике, этот механизм сперва необходимо тщательно изучить.
Новые антимикробные препараты — в том числе пептиды, то есть полимеры аминокислот, по сути, «маленькие белки» — можно найти, изучая биоразнообразие нашей планеты. Многие живые существа в ходе эволюции приобрели собственные уникальные методы защиты от инфекции, и их вполне можно позаимствовать для использования в медицине. В своем новом исследовании сотрудники Института биоорганической химии им. М.М. Шемякина и Ю.А. Овчинникова РАН и МФТИ обратили внимание на капителлацин — антимикробный пептид, выделенный из морского многощетинкового червя (полихеты) Capitella teleta. Это вещество уже показало активность в отношении бактерий, в том числе имеющих антибиотикоустойчивость.
Изученная молекула относится к группе бета-шпилечных пептидов, поскольку содержит в себе структуру, называемую «бета-шпилька», и несет положительный заряд. Известно, что такие соединения действуют на мембрану бактерий, что и приводит к подавлению их роста. Пептиды могут собираться на мембране в поры, которые пронизывают ее и тем самым разрушают клетки. В то же время другие похожие по структуре молекулы вполне могут работать иначе.
Чтобы понять, как именно действует на бактериальные мембраны капителлацин, авторы исследования использовали модель, которая воспроизводит многие их свойства, — мицеллы, то есть микроскопические пузырьки из детергента. Молекулы детергента имеют свойства, близкие к свойствам липидов, которые являются основой всех клеточных мембран. Для отслеживания состояния антимикробного пептида использовали спектроскопию ядерного магнитного резонанса (ЯМР) высокого разрешения. Применение этого метода помогло ученым описать переходы молекулы из одного состояния в другое и их термодинамические характеристики. Чтобы сделать молекулы капителлацина «видимыми» в таких экспериментах, авторы ввели в них редкий изотоп азота-15.
Оказалось, что изменение концентрации пептида в мицеллах и изменение температуры управляют переходами капителлацина между мономерной и димерной формой. Иначе говоря, соединением его молекул в пары и их распадом. Низкие температуры стимулируют образование димеров, тогда как нагрев ускоряет их разрушение. Обе формы встраиваются в мицеллы, а значит, и в мембраны бактерий. При этом комплексы молекул капителлацина не пронизывают липидный двойной слой (мицеллу) насквозь и не образуют поры, а держатся на ее поверхности — в соответствии с так называемой «моделью ковра».
Это объясняет, почему свойства капителлацина сильно отличаются от тех, что имеют похожие на него антимикробные пептиды. Авторы подчеркивают особую роль димеризации молекулы в ее активности, а также корреляцию стабильности димеров с важными для использования в клинике свойствами.
«Полученные результаты позволяют более точно описать механизмы фолдинга (то есть приобретения трехмерной формы) бета-структурных мембранных белков, имеющих структуру бета-бочонка, и образования олигомерных трансмембранных пор пептидами с похожей структурой. Мы надеемся, что изучение взаимосвязи между пространственной структурой и биологической активностью антимикробных пептидов поможет разработать новые антибиотики, так необходимые для современной медицины», — рассказал руководитель исследования, профессор РАН Захар Шенкарёв, заведующий лабораторией структурной биологии ионных каналов ИБХ РАН и заместитель заведующего кафедрой физико-химической биологии и биотехнологии МФТИ.
Исследование выполнено при поддержке Российского научного фонда (проект РНФ № 22-14-00380).
Информация предоставлена Центром научной коммуникации МФТИ
Источник фото: ru.123rf.com